EconPapers    
Economics at your fingertips  
 

Error bound for the asymptotic expansion of the Hartman-Watson integral

Dan Pirjol

Papers from arXiv.org

Abstract: This note gives a bound on the error of the leading term of the $t\to 0$ asymptotic expansion of the Hartman-Watson distribution $\theta(r,t)$ in the regime $rt=\rho$ constant. The leading order term has the form $\theta(\rho/t,t)=\frac{1}{2\pi t}e^{-\frac{1}{t} (F(\rho)-\pi^2/2)} G(\rho) (1 + \vartheta(t,\rho))$, where the error term is bounded uniformly over $\rho$ as $|\vartheta(t,\rho)|\leq \frac{1}{70}t$.

Date: 2025-04
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2504.04992 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2504.04992

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-04-08
Handle: RePEc:arx:papers:2504.04992