Optimal classification with outcome performativity
Elizabeth Maggie Penn
Papers from arXiv.org
Abstract:
I consider the problem of classifying individual behavior in a simple setting of outcome performativity where the behavior the algorithm seeks to classify is itself dependent on the algorithm. I show in this context that the most accurate classifier is either a threshold or a negative threshold rule. A threshold rule offers the "good" classification to those individuals whose outcome likelihoods are greater than some cutpoint, while a negative threshold rule offers the "good" outcome to those whose outcome likelihoods are less than some cutpoint. While seemingly pathological, I show that a negative threshold rule can be the most accurate classifier when outcomes are performative. I provide an example of such a classifier, and extend the analysis to more general algorithm objectives, allowing the algorithm to differentially weigh false negatives and false positives, for example.
Date: 2025-04
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2504.06127 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2504.06127
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().