Balancing Engagement and Polarization: Multi-Objective Alignment of News Content Using LLMs
Mengjie,
Cheng,
Elie Ofek and
Hema Yoganarasimhan
Additional contact information
Mengjie: Magie
Papers from arXiv.org
Abstract:
We study how media firms can use LLMs to generate news content that aligns with multiple objectives -- making content more engaging while maintaining a preferred level of polarization/slant consistent with the firm's editorial policy. Using news articles from The New York Times, we first show that more engaging human-written content tends to be more polarizing. Further, naively employing LLMs (with prompts or standard Direct Preference Optimization approaches) to generate more engaging content can also increase polarization. This has an important managerial and policy implication: using LLMs without building in controls for limiting slant can exacerbate news media polarization. We present a constructive solution to this problem based on the Multi-Objective Direct Preference Optimization (MODPO) algorithm, a novel approach that integrates Direct Preference Optimization with multi-objective optimization techniques. We build on open-source LLMs and develop a new language model that simultaneously makes content more engaging while maintaining a preferred editorial stance. Our model achieves this by modifying content characteristics strongly associated with polarization but that have a relatively smaller impact on engagement. Our approach and findings apply to other settings where firms seek to use LLMs for content creation to achieve multiple objectives, e.g., advertising and social media.
Date: 2025-04
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2504.13444 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2504.13444
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().