Multiscale Causal Analysis of Market Efficiency via News Uncertainty Networks and the Financial Chaos Index
Masoud Ataei
Papers from arXiv.org
Abstract:
This study evaluates the scale-dependent informational efficiency of stock markets using the Financial Chaos Index, a tensor-eigenvalue-based measure of realized volatility. Incorporating Granger causality and network-theoretic analysis across a range of economic, policy, and news-based uncertainty indices, we assess whether public information is efficiently incorporated into asset price fluctuations. Based on a 34-year time period from 1990 to 2023, at the daily frequency, the semi-strong form of the Efficient Market Hypothesis is rejected at the 1\% level of significance, indicating that asset price changes respond predictably to lagged news-based uncertainty. In contrast, at the monthly frequency, such predictive structure largely vanishes, supporting informational efficiency at coarser temporal resolutions. A structural analysis of the Granger causality network reveals that fiscal and monetary policy uncertainties act as core initiators of systemic volatility, while peripheral indices, such as those related to healthcare and consumer prices, serve as latent bridges that become activated under crisis conditions. These findings underscore the role of time-scale decomposition and structural asymmetries in diagnosing market inefficiencies and mapping the propagation of macro-financial uncertainty.
Date: 2025-05
New Economics Papers: this item is included in nep-ets and nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.01543 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.01543
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().