EconPapers    
Economics at your fingertips  
 

Optimal Post-Hoc Theorizing

Andrew Y. Chen

Papers from arXiv.org

Abstract: For many economic questions, the empirical results are not interesting unless they are strong. For these questions, theorizing before the results are known is not always optimal. Instead, the optimal sequencing of theory and empirics trades off a ``Darwinian Learning'' effect from theorizing first with a ``Statistical Learning'' effect from examining the data first. This short paper formalizes the tradeoff in a Bayesian model. In the modern era of mature economic theory and enormous datasets, I argue that post hoc theorizing is typically optimal.

Date: 2025-05
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2505.10370 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.10370

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-06-14
Handle: RePEc:arx:papers:2505.10370