EconPapers    
Economics at your fingertips  
 

SAE-FiRE: Enhancing Earnings Surprise Predictions Through Sparse Autoencoder Feature Selection

Huopu Zhang, Yanguang Liu and Mengnan Du

Papers from arXiv.org

Abstract: Predicting earnings surprises through the analysis of earnings conference call transcripts has attracted increasing attention from the financial research community. Conference calls serve as critical communication channels between company executives, analysts, and shareholders, offering valuable forward-looking information. However, these transcripts present significant analytical challenges, typically containing over 5,000 words with substantial redundancy and industry-specific terminology that creates obstacles for language models. In this work, we propose the Sparse Autoencoder for Financial Representation Enhancement (SAE-FiRE) framework to address these limitations by extracting key information while eliminating redundancy. SAE-FiRE employs Sparse Autoencoders (SAEs) to efficiently identify patterns and filter out noises, and focusing specifically on capturing nuanced financial signals that have predictive power for earnings surprises. Experimental results indicate that the proposed method can significantly outperform comparing baselines.

Date: 2025-05
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2505.14420 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.14420

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-06-14
Handle: RePEc:arx:papers:2505.14420