EconPapers    
Economics at your fingertips  
 

Forecasting Residential Heating and Electricity Demand with Scalable, High-Resolution, Open-Source Models

Stephen J. Lee and Cailinn Drouin

Papers from arXiv.org

Abstract: We present a novel framework for high-resolution forecasting of residential heating and electricity demand using probabilistic deep learning models. We focus specifically on providing hourly building-level electricity and heating demand forecasts for the residential sector. Leveraging multimodal building-level information -- including data on building footprint areas, heights, nearby building density, nearby building size, land use patterns, and high-resolution weather data -- and probabilistic modeling, our methods provide granular insights into demand heterogeneity. Validation at the building level underscores a step change improvement in performance relative to NREL's ResStock model, which has emerged as a research community standard for residential heating and electricity demand characterization. In building-level heating and electricity estimation backtests, our probabilistic models respectively achieve RMSE scores 18.3\% and 35.1\% lower than those based on ResStock. By offering an open-source, scalable, high-resolution platform for demand estimation and forecasting, this research advances the tools available for policymakers and grid planners, contributing to the broader effort to decarbonize the U.S. building stock and meeting climate objectives.

Date: 2025-05
New Economics Papers: this item is included in nep-for
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2505.22873 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.22873

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-06-21
Handle: RePEc:arx:papers:2505.22873