EconPapers    
Economics at your fingertips  
 

TIP-Search: Time-Predictable Inference Scheduling for Market Prediction under Uncertain Load

Xibai Wang

Papers from arXiv.org

Abstract: This paper proposes TIP-Search, a time-predictable inference scheduling framework for real-time market prediction under uncertain workloads. Motivated by the strict latency demands in high-frequency financial systems, TIP-Search dynamically selects a deep learning model from a heterogeneous pool, aiming to maximize predictive accuracy while satisfying per-task deadline constraints. Our approach profiles latency and generalization performance offline, then performs online task-aware selection without relying on explicit input domain labels. We evaluate TIP-Search on three real-world limit order book datasets (FI-2010, Binance BTC/USDT, LOBSTER AAPL) and demonstrate that it outperforms static baselines with up to 8.5% improvement in accuracy and 100% deadline satisfaction. Our results highlight the effectiveness of TIP-Search in robust low-latency financial inference under uncertainty.

Date: 2025-05, Revised 2025-06
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2506.08026 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2506.08026

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-06-18
Handle: RePEc:arx:papers:2506.08026