Benchmarking Pre-Trained Time Series Models for Electricity Price Forecasting
Timoth\'ee Hornek Amir Sartipi,
Igor Tchappi and
Gilbert Fridgen
Papers from arXiv.org
Abstract:
Accurate electricity price forecasting (EPF) is crucial for effective decision-making in power trading on the spot market. While recent advances in generative artificial intelligence (GenAI) and pre-trained large language models (LLMs) have inspired the development of numerous time series foundation models (TSFMs) for time series forecasting, their effectiveness in EPF remains uncertain. To address this gap, we benchmark several state-of-the-art pretrained models--Chronos-Bolt, Chronos-T5, TimesFM, Moirai, Time-MoE, and TimeGPT--against established statistical and machine learning (ML) methods for EPF. Using 2024 day-ahead auction (DAA) electricity prices from Germany, France, the Netherlands, Austria, and Belgium, we generate daily forecasts with a one-day horizon. Chronos-Bolt and Time-MoE emerge as the strongest among the TSFMs, performing on par with traditional models. However, the biseasonal MSTL model, which captures daily and weekly seasonality, stands out for its consistent performance across countries and evaluation metrics, with no TSFM statistically outperforming it.
Date: 2025-06
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2506.08113 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2506.08113
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().