Intelligent Automation for FDI Facilitation: Optimizing Tariff Exemption Processes with OCR And Large Language Models
Muhammad Sukri Bin Ramli
Papers from arXiv.org
Abstract:
Tariff exemptions are fundamental to attracting Foreign Direct Investment (FDI) into the manufacturing sector, though the associated administrative processes present areas for optimization for both investing entities and the national tax authority. This paper proposes a conceptual framework to empower tax administration by leveraging a synergistic integration of Optical Character Recognition (OCR) and Large Language Model (LLM) technologies. The proposed system is designed to first utilize OCR for intelligent digitization, precisely extracting data from diverse application documents and key regulatory texts such as tariff orders. Subsequently, the LLM would enhance the capabilities of administrative officers by automating the critical and time-intensive task of verifying submitted HS Tariff Codes for machinery, equipment, and raw materials against official exemption lists. By enhancing the speed and precision of these initial assessments, this AI-driven approach systematically reduces potential for non-alignment and non-optimized exemption utilization, thereby streamlining the investment journey for FDI companies. For the national administration, the benefits include a significant boost in operational capacity, reduced administrative load, and a strengthened control environment, ultimately improving the ease of doing business and solidifying the nation's appeal as a premier destination for high-value manufacturing FDI.
Date: 2025-06
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2506.12093 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2506.12093
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().