Gradient Boosting for Spatial Regression Models with Autoregressive Disturbances
Michael Balzer
Papers from arXiv.org
Abstract:
Researchers in urban and regional studies increasingly deal with spatial data that reflects geographic location and spatial relationships. As a framework for dealing with the unique nature of spatial data, various spatial regression models have been introduced. In this article, a novel model-based gradient boosting algorithm for spatial regression models with autoregressive disturbances is proposed. Due to the modular nature, the approach provides an alternative estimation procedure which is feasible even in high-dimensional settings where established quasi-maximum likelihood or generalized method of moments estimators do not yield unique solutions. The approach additionally enables data-driven variable and model selection in low- as well as high-dimensional settings. Since the bias-variance trade-off is also controlled in the algorithm, implicit regularization is imposed which improves prediction accuracy on out-of-sample spatial data. Detailed simulation studies regarding the performance of estimation, prediction and variable selection in low- and high-dimensional settings confirm proper functionality of the proposed methodology. To illustrative the functionality of the model-based gradient boosting algorithm, a case study is presented where the life expectancy in German districts is modeled incorporating a potential spatial dependence structure.
Date: 2025-06
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2506.13682 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2506.13682
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().