EconPapers    
Economics at your fingertips  
 

News Sentiment Embeddings for Stock Price Forecasting

Ayaan Qayyum

Papers from arXiv.org

Abstract: This paper will discuss how headline data can be used to predict stock prices. The stock price in question is the SPDR S&P 500 ETF Trust, also known as SPY that tracks the performance of the largest 500 publicly traded corporations in the United States. A key focus is to use news headlines from the Wall Street Journal (WSJ) to predict the movement of stock prices on a daily timescale with OpenAI-based text embedding models used to create vector encodings of each headline with principal component analysis (PCA) to exact the key features. The challenge of this work is to capture the time-dependent and time-independent, nuanced impacts of news on stock prices while handling potential lag effects and market noise. Financial and economic data were collected to improve model performance; such sources include the U.S. Dollar Index (DXY) and Treasury Interest Yields. Over 390 machine-learning inference models were trained. The preliminary results show that headline data embeddings greatly benefit stock price prediction by at least 40% compared to training and optimizing a machine learning system without headline data embeddings.

Date: 2025-06
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2507.01970 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.01970

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-07-26
Handle: RePEc:arx:papers:2507.01970