EconPapers    
Economics at your fingertips  
 

A General Class of Model-Free Dense Precision Matrix Estimators

Mehmet Caner Agostino Capponi Mihailo Stojnic

Papers from arXiv.org

Abstract: We introduce prototype consistent model-free, dense precision matrix estimators that have broad application in economics. Using quadratic form concentration inequalities and novel algebraic characterizations of confounding dimension reductions, we are able to: (i) obtain non-asymptotic bounds for precision matrix estimation errors and also (ii) consistency in high dimensions; (iii) uncover the existence of an intrinsic signal-to-noise -- underlying dimensions tradeoff; and (iv) avoid exact population sparsity assumptions. In addition to its desirable theoretical properties, a thorough empirical study of the S&P 500 index shows that a tuning parameter-free special case of our general estimator exhibits a doubly ascending Sharpe Ratio pattern, thereby establishing a link with the famous double descent phenomenon dominantly present in recent statistical and machine learning literature.

Date: 2025-07
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2507.04663 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.04663

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-07-26
Handle: RePEc:arx:papers:2507.04663