Joint deep calibration of the 4-factor PDV model
Fabio Baschetti,
Giacomo Bormetti and
Pietro Rossi
Papers from arXiv.org
Abstract:
Joint calibration to SPX and VIX market data is a delicate task that requires sophisticated modeling and incurs significant computational costs. The latter is especially true when pricing of volatility derivatives hinges on nested Monte Carlo simulation. One such example is the 4-factor Markov Path-Dependent Volatility (PDV) model of Guyon and Lekeufack (2023). Nonetheless, its realism has earned it considerable attention in recent years. Gazzani and Guyon (2025) marked a relevant contribution by learning the VIX as a random variable, i.e., a measurable function of the model parameters and the Markovian factors. A neural network replaces the inner simulation and makes the joint calibration problem accessible. However, the minimization loop remains slow due to expensive outer simulation. The present paper overcomes this limitation by learning SPX implied volatilities, VIX futures, and VIX call option prices. The pricing functions reduce to simple matrix-vector products that can be evaluated on the fly, shrinking calibration times to just a few seconds.
Date: 2025-07
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2507.09412 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.09412
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().