EconPapers    
Economics at your fingertips  
 

Approaches for modelling the term-structure of default risk under IFRS 9: A tutorial using discrete-time survival analysis

Arno Botha and Tanja Verster

Papers from arXiv.org

Abstract: Under the International Financial Reporting Standards (IFRS) 9, credit losses ought to be recognised timeously and accurately. This requirement belies a certain degree of dynamicity when estimating the constituent parts of a credit loss event, most notably the probability of default (PD). It is notoriously difficult to produce such PD-estimates at every point of loan life that are adequately dynamic and accurate, especially when considering the ever-changing macroeconomic background. In rendering these lifetime PD-estimates, the choice of modelling technique plays an important role, which is why we first review a few classes of techniques, including the merits and limitations of each. Our main contribution however is the development of an in-depth and data-driven tutorial using a particular class of techniques called discrete-time survival analysis. This tutorial is accompanied by a diverse set of reusable diagnostic measures for evaluating various aspects of a survival model and the underlying data. A comprehensive R-based codebase is further contributed. We believe that our work can help cultivate common modelling practices under IFRS 9, and should be valuable to practitioners, model validators, and regulators alike.

Date: 2025-07
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2507.15441 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2507.15441

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-07-26
Handle: RePEc:arx:papers:2507.15441