Hedging with memory: shallow and deep learning with signatures
Eduardo Abi Jaber and
Louis-Amand G\'erard
Papers from arXiv.org
Abstract:
We investigate the use of path signatures in a machine learning context for hedging exotic derivatives under non-Markovian stochastic volatility models. In a deep learning setting, we use signatures as features in feedforward neural networks and show that they outperform LSTMs in most cases, with orders of magnitude less training compute. In a shallow learning setting, we compare two regression approaches: the first directly learns the hedging strategy from the expected signature of the price process; the second models the dynamics of volatility using a signature volatility model, calibrated on the expected signature of the volatility. Solving the hedging problem in the calibrated signature volatility model yields more accurate and stable results across different payoffs and volatility dynamics.
Date: 2025-08
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2508.02759 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.02759
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().