EconPapers    
Economics at your fingertips  
 

Dynamic Skewness in Stochastic Volatility Models: A Penalized Prior Approach

Bruno E. Holtz, Ricardo S. Ehlers, Adriano K. Suzuki and Francisco Louzada

Papers from arXiv.org

Abstract: Financial time series often exhibit skewness and heavy tails, making it essential to use models that incorporate these characteristics to ensure greater reliability in the results. Furthermore, allowing temporal variation in the skewness parameter can bring significant gains in the analysis of this type of series. However, for more robustness, it is crucial to develop models that balance flexibility and parsimony. In this paper, we propose dynamic skewness stochastic volatility models in the SMSN family (DynSSV-SMSN), using priors that penalize model complexity. Parameter estimation was carried out using the Hamiltonian Monte Carlo (HMC) method via the \texttt{RStan} package. Simulation results demonstrated that penalizing priors present superior performance in several scenarios compared to the classical choices. In the empirical application to returns of cryptocurrencies, models with heavy tails and dynamic skewness provided a better fit to the data according to the DIC, WAIC, and LOO-CV information criteria.

Date: 2025-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2508.10778 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.10778

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-09-19
Handle: RePEc:arx:papers:2508.10778