Bayesian Double Machine Learning for Causal Inference
Francis J. DiTraglia and
Laura Liu
Papers from arXiv.org
Abstract:
This paper proposes a simple, novel, and fully-Bayesian approach for causal inference in partially linear models with high-dimensional control variables. Off-the-shelf machine learning methods can introduce biases in the causal parameter known as regularization-induced confounding. To address this, we propose a Bayesian Double Machine Learning (BDML) method, which modifies a standard Bayesian multivariate regression model and recovers the causal effect of interest from the reduced-form covariance matrix. Our BDML is related to the burgeoning frequentist literature on DML while addressing its limitations in finite-sample inference. Moreover, the BDML is based on a fully generative probability model in the DML context, adhering to the likelihood principle. We show that in high dimensional setups the naive estimator implicitly assumes no selection on observables--unlike our BDML. The BDML exhibits lower asymptotic bias and achieves asymptotic normality and semiparametric efficiency as established by a Bernstein-von Mises theorem, thereby ensuring robustness to misspecification. In simulations, our BDML achieves lower RMSE, better frequentist coverage, and shorter confidence interval width than alternatives from the literature, both Bayesian and frequentist.
Date: 2025-08
New Economics Papers: this item is included in nep-cmp, nep-ets and nep-inv
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2508.12688 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.12688
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().