Combining a Large Pool of Forecasts of Value-at-Risk and Expected Shortfall
James W. Taylor and
Chao Wang
Papers from arXiv.org
Abstract:
Value-at-risk (VaR) and expected shortfall (ES) have become widely used measures of risk for daily portfolio returns. As a result, many methods now exist for forecasting the VaR and ES. These include GARCH-based modelling, approaches involving quantile-based autoregressive models, and methods incorporating measures of realised volatility. When multiple forecasting methods are available, an alternative to method selection is forecast combination. In this paper, we consider the combination of a large pool of VaR and ES forecasts. As there have been few studies in this area, we implement a variety of new combining methods. In terms of simplistic methods, in addition to the simple average, the large pool of forecasts leads us to use the median and mode. As a complement to the previously proposed performance-based weighted combinations, we use regularised estimation to limit the risk of overfitting due to the large number of weights. By viewing the forecasts of VaR and ES from each method as the bounds of an interval forecast, we are able to apply interval forecast combining methods from the decision analysis literature. These include different forms of trimmed mean, and a probability averaging method that involves a mixture of the probability distributions inferred from the VaR and ES forecasts. Among other methods, we consider smooth transition between two combining methods. Using six stock indices and a pool of 90 individual forecasting methods, we obtained particularly strong results for a trimmed mean approach, the probability averaging method, and performance-based weighting combining.
Date: 2025-08
New Economics Papers: this item is included in nep-ets, nep-for and nep-rmg
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2508.16919 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.16919
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().