Deep Reinforcement Learning for Optimal Asset Allocation Using DDPG with TiDE
Rongwei Liu,
Jin Zheng and
John Cartlidge
Papers from arXiv.org
Abstract:
The optimal asset allocation between risky and risk-free assets is a persistent challenge due to the inherent volatility in financial markets. Conventional methods rely on strict distributional assumptions or non-additive reward ratios, which limit their robustness and applicability to investment goals. To overcome these constraints, this study formulates the optimal two-asset allocation problem as a sequential decision-making task within a Markov Decision Process (MDP). This framework enables the application of reinforcement learning (RL) mechanisms to develop dynamic policies based on simulated financial scenarios, regardless of prerequisites. We use the Kelly criterion to balance immediate reward signals against long-term investment objectives, and we take the novel step of integrating the Time-series Dense Encoder (TiDE) into the Deep Deterministic Policy Gradient (DDPG) RL framework for continuous decision-making. We compare DDPG-TiDE with a simple discrete-action Q-learning RL framework and a passive buy-and-hold investment strategy. Empirical results show that DDPG-TiDE outperforms Q-learning and generates higher risk adjusted returns than buy-and-hold. These findings suggest that tackling the optimal asset allocation problem by integrating TiDE within a DDPG reinforcement learning framework is a fruitful avenue for further exploration.
Date: 2025-08
New Economics Papers: this item is included in nep-cmp
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2508.20103 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.20103
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().