EconPapers    
Economics at your fingertips  
 

Mitigating Distribution Shift in Stock Price Data via Return-Volatility Normalization for Accurate Prediction

Hyunwoo Lee, Jihyeong Jeon, Jaemin Hong and U Kang

Papers from arXiv.org

Abstract: How can we address distribution shifts in stock price data to improve stock price prediction accuracy? Stock price prediction has attracted attention from both academia and industry, driven by its potential to uncover complex market patterns and enhance decisionmaking. However, existing methods often fail to handle distribution shifts effectively, focusing on scaling or representation adaptation without fully addressing distributional discrepancies and shape misalignments between training and test data. We propose ReVol (Return-Volatility Normalization for Mitigating Distribution Shift in Stock Price Data), a robust method for stock price prediction that explicitly addresses the distribution shift problem. ReVol leverages three key strategies to mitigate these shifts: (1) normalizing price features to remove sample-specific characteristics, including return, volatility, and price scale, (2) employing an attention-based module to estimate these characteristics accurately, thereby reducing the influence of market anomalies, and (3) reintegrating the sample characteristics into the predictive process, restoring the traits lost during normalization. Additionally, ReVol combines geometric Brownian motion for long-term trend modeling with neural networks for short-term pattern recognition, unifying their complementary strengths. Extensive experiments on real-world datasets demonstrate that ReVol enhances the performance of the state-of-the-art backbone models in most cases, achieving an average improvement of more than 0.03 in IC and over 0.7 in SR across various settings.

Date: 2025-08, Revised 2025-08
New Economics Papers: this item is included in nep-for
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2508.20108 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.20108

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-10-04
Handle: RePEc:arx:papers:2508.20108