Controllable Generation of Implied Volatility Surfaces with Variational Autoencoders
Jing Wang,
Shuaiqiang Liu and
Cornelis Vuik
Additional contact information
Jing Wang: Numerical Analysis, Delft University of Technology, Delft, the Netherlands
Shuaiqiang Liu: Numerical Analysis, Delft University of Technology, Delft, the Netherlands
Cornelis Vuik: Numerical Analysis, Delft University of Technology, Delft, the Netherlands
Papers from arXiv.org
Abstract:
This paper presents a deep generative modeling framework for controllably synthesizing implied volatility surfaces (IVSs) using a variational autoencoder (VAE). Unlike conventional data-driven models, our approach provides explicit control over meaningful shape features (e.g., volatility level, slope, curvature, term-structure) to generate IVSs with desired characteristics. In our framework, financially interpretable shape features are disentangled from residual latent factors. The target features are embedded into the VAE architecture as controllable latent variables, while the residual latent variables capture additional structure to preserve IVS shape diversity. To enable this control, IVS feature values are quantified via regression at an anchor point and incorporated into the decoder to steer generation. Numerical experiments demonstrate that the generative model enables rapid generation of realistic IVSs with desired features rather than arbitrary patterns, and achieves high accuracy across both single- and multi-feature control settings. For market validity, an optional post-generation latent-space repair algorithm adjusts only the residual latent variables to remove occasional violations of static no-arbitrage conditions without altering the specified features. Compared with black-box generators, the framework combines interpretability, controllability, and flexibility for synthetic IVS generation and scenario design.
Date: 2025-09
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2509.01743 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.01743
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().