Artificial or Human Intelligence?
Eric Gao
Papers from arXiv.org
Abstract:
Artificial intelligence (AI) tools such as large language models (LLMs) are already altering student learning. Unlike previous technologies, LLMs can independently solve problems regardless of student understanding, yet are not always accurate (due to hallucination) and face sharp performance cutoffs (due to emergence). Access to these tools significantly alters a student's incentives to learn, potentially decreasing the sum knowledge of humans and AI. Additionally, the marginal benefit of learning changes depending on which side of the AI frontier a human is on, creating a discontinuous gap between those that know more than or less than AI. This contrasts with downstream models of AI's impact on the labor force which assume continuous ability. Finally, increasing the portion of assignments where AI cannot be used can counteract student mis-specification about AI accuracy, preventing underinvestment. A better understanding of how AI impacts learning and student incentives is crucial for educators to adapt to this new technology.
Date: 2025-09
New Economics Papers: this item is included in nep-ain
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2509.02879 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.02879
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().