Volatility Modeling via EWMA-Driven Time-Dependent Hurst Parameters
Jayanth Athipatla
Papers from arXiv.org
Abstract:
We introduce a novel rough Bergomi (rBergomi) model featuring a variance-driven exponentially weighted moving average (EWMA) time-dependent Hurst parameter $H_t$, fundamentally distinct from recent machine learning and wavelet-based approaches in the literature. Our framework pioneers a unified rough differential equation (RDE) formulation grounded in rough path theory, where the Hurst parameter dynamically adapts to evolving volatility regimes through a continuous EWMA mechanism tied to instantaneous variance. Unlike discrete model-switching or computationally intensive forecasting methods, our approach provides mathematical tractability while capturing volatility clustering and roughness bursts. We rigorously establish existence and uniqueness of solutions via rough path theory and derive martingale properties. Empirical validation on diverse asset classes including equities, cryptocurrencies, and commodities demonstrates superior performance in capturing dynamics and out-of-sample pricing accuracy. Our results show significant improvements over traditional constant-Hurst models.
Date: 2025-09
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2509.05820 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.05820
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().