EconPapers    
Economics at your fingertips  
 

Why Bonds Fail Differently? Explainable Multimodal Learning for Multi-Class Default Prediction

Yi Lu, Aifan Ling, Chaoqun Wang and Yaxin Xu

Papers from arXiv.org

Abstract: In recent years, China's bond market has seen a surge in defaults amid regulatory reforms and macroeconomic volatility. Traditional machine learning models struggle to capture financial data's irregularity and temporal dependencies, while most deep learning models lack interpretability-critical for financial decision-making. To tackle these issues, we propose EMDLOT (Explainable Multimodal Deep Learning for Time-series), a novel framework for multi-class bond default prediction. EMDLOT integrates numerical time-series (financial/macroeconomic indicators) and unstructured textual data (bond prospectuses), uses Time-Aware LSTM to handle irregular sequences, and adopts soft clustering and multi-level attention to boost interpretability. Experiments on 1994 Chinese firms (2015-2024) show EMDLOT outperforms traditional (e.g., XGBoost) and deep learning (e.g., LSTM) benchmarks in recall, F1-score, and mAP, especially in identifying default/extended firms. Ablation studies validate each component's value, and attention analyses reveal economically intuitive default drivers. This work provides a practical tool and a trustworthy framework for transparent financial risk modeling.

Date: 2025-09
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2509.10802 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.10802

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-10-01
Handle: RePEc:arx:papers:2509.10802