EconPapers    
Economics at your fingertips  
 

Reinforcement Learning-Based Market Making as a Stochastic Control on Non-Stationary Limit Order Book Dynamics

Rafael Zimmer and Oswaldo Luiz do Valle Costa

Papers from arXiv.org

Abstract: Reinforcement Learning has emerged as a promising framework for developing adaptive and data-driven strategies, enabling market makers to optimize decision-making policies based on interactions with the limit order book environment. This paper explores the integration of a reinforcement learning agent in a market-making context, where the underlying market dynamics have been explicitly modeled to capture observed stylized facts of real markets, including clustered order arrival times, non-stationary spreads and return drifts, stochastic order quantities and price volatility. These mechanisms aim to enhance stability of the resulting control agent, and serve to incorporate domain-specific knowledge into the agent policy learning process. Our contributions include a practical implementation of a market making agent based on the Proximal-Policy Optimization (PPO) algorithm, alongside a comparative evaluation of the agent's performance under varying market conditions via a simulator-based environment. As evidenced by our analysis of the financial return and risk metrics when compared to a closed-form optimal solution, our results suggest that the reinforcement learning agent can effectively be used under non-stationary market conditions, and that the proposed simulator-based environment can serve as a valuable tool for training and pre-training reinforcement learning agents in market-making scenarios.

Date: 2025-09
New Economics Papers: this item is included in nep-cmp and nep-mst
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2509.12456 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.12456

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-09-30
Handle: RePEc:arx:papers:2509.12456