EconPapers    
Economics at your fingertips  
 

Sharp Large Deviations and Gibbs Conditioning for Threshold Models in Portfolio Credit Risk

Fengnan Deng, Anand N. Vidyashankar and Jeffrey F. Collamore

Papers from arXiv.org

Abstract: We obtain sharp large deviation estimates for exceedance probabilities in dependent triangular array threshold models with a diverging number of latent factors. The prefactors quantify how latent-factor dependence and tail geometry enter at leading order, yielding three regimes: Gaussian or exponential-power tails produce polylogarithmic refinements of the Bahadur-Rao $n^{-1/2}$ law; regularly varying tails yield index-driven polynomial scaling; and bounded-support (endpoint) cases lead to an $n^{-3/2}$ prefactor. We derive these results through Laplace-Olver asymptotics for exponential integrals and conditional Bahadur-Rao estimates for the triangular arrays. Using these estimates, we establish a Gibbs conditioning principle in total variation: conditioned on a large exceedance event, the default indicators become asymptotically i.i.d., and the loss-given-default distribution is exponentially tilted (with the boundary case handled by an endpoint analysis). As illustrations, we obtain second-order approximations for Value-at-Risk and Expected Shortfall, clarifying when portfolios operate in the genuine large-deviation regime. The results provide a transferable set of techniques-localization, curvature, and tilt identification-for sharp rare-event analysis in dependent threshold systems.

Date: 2025-09
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2509.19151 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.19151

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-10-04
Handle: RePEc:arx:papers:2509.19151