Sharp Large Deviations and Gibbs Conditioning for Threshold Models in Portfolio Credit Risk
Fengnan Deng,
Anand N. Vidyashankar and
Jeffrey F. Collamore
Papers from arXiv.org
Abstract:
We obtain sharp large deviation estimates for exceedance probabilities in dependent triangular array threshold models with a diverging number of latent factors. The prefactors quantify how latent-factor dependence and tail geometry enter at leading order, yielding three regimes: Gaussian or exponential-power tails produce polylogarithmic refinements of the Bahadur-Rao $n^{-1/2}$ law; regularly varying tails yield index-driven polynomial scaling; and bounded-support (endpoint) cases lead to an $n^{-3/2}$ prefactor. We derive these results through Laplace-Olver asymptotics for exponential integrals and conditional Bahadur-Rao estimates for the triangular arrays. Using these estimates, we establish a Gibbs conditioning principle in total variation: conditioned on a large exceedance event, the default indicators become asymptotically i.i.d., and the loss-given-default distribution is exponentially tilted (with the boundary case handled by an endpoint analysis). As illustrations, we obtain second-order approximations for Value-at-Risk and Expected Shortfall, clarifying when portfolios operate in the genuine large-deviation regime. The results provide a transferable set of techniques-localization, curvature, and tilt identification-for sharp rare-event analysis in dependent threshold systems.
Date: 2025-09
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2509.19151 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.19151
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().