EconPapers    
Economics at your fingertips  
 

Simulation of the Heston stochastic local volatility model: implicit and explicit approaches

Meng Cai and Tianze Li

Papers from arXiv.org

Abstract: The Heston stochastic-local volatility (HSLV) model is widely used to capture both market calibration and realistic volatility dynamics, but simulating its CIR-type variance process is numerically challenging.This paper compare two alternative schemes for HSLV simulation: the truncated Euler method and the backward Euler method with the conventional Euler and almost exact simulation methods in \cite{van2014heston} by using a Monte Carlo method.Numerical results show that the truncated method achieves strong convergence and remains robust under high volatility, while the backward method provides the smallest errors and most stable performance in stress scenarios, though at higher computational cost.

Date: 2025-09
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2509.24449 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2509.24449

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-10-04
Handle: RePEc:arx:papers:2509.24449