Joint Bidding on Intraday and Frequency Containment Reserve Markets
Yiming Zhang,
Wolfgang Ridinger and
David Wozabal
Papers from arXiv.org
Abstract:
As renewable energy integration increases supply variability, battery energy storage systems (BESS) present a viable solution for balancing supply and demand. This paper proposes a novel approach for optimizing battery BESS participation in multiple electricity markets. We develop a joint bidding strategy that combines participation in the primary frequency reserve market with continuous trading in the intraday market, addressing a gap in the extant literature which typically considers these markets in isolation or simplifies the continuous nature of intraday trading. Our approach utilizes a mixed integer linear programming implementation of the rolling intrinsic algorithm for intraday decisions and state of charge recovery, alongside a learned classifier strategy (LCS) that determines optimal capacity allocation between markets. A comprehensive out-of-sample backtest over more than one year of historical German market data validates our approach: The LCS increases overall profits by over 4% compared to the best-performing static strategy and by more than 3% over a naive dynamic benchmark. Crucially, our method closes the gap to a theoretical perfect foresight strategy to just 4%, demonstrating the effectiveness of dynamic, learning-based allocation in a complex, multi-market environment.
Date: 2025-10
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.03209 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.03209
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().