Beyond Softmax: A New Perspective on Gradient Bandits
Emerson Melo and
David M\"uller
Papers from arXiv.org
Abstract:
We establish a link between a class of discrete choice models and the theory of online learning and multi-armed bandits. Our contributions are: (i) sublinear regret bounds for a broad algorithmic family, encompassing Exp3 as a special case; (ii) a new class of adversarial bandit algorithms derived from generalized nested logit models \citep{wen:2001}; and (iii) \textcolor{black}{we introduce a novel class of generalized gradient bandit algorithms that extends beyond the widely used softmax formulation. By relaxing the restrictive independence assumptions inherent in softmax, our framework accommodates correlated learning dynamics across actions, thereby broadening the applicability of gradient bandit methods.} Overall, the proposed algorithms combine flexible model specification with computational efficiency via closed-form sampling probabilities. Numerical experiments in stochastic bandit settings demonstrate their practical effectiveness.
Date: 2025-10
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.03979 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.03979
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().