EconPapers    
Economics at your fingertips  
 

The Bayesian Origin of the Probability Weighting Function in Human Representation of Probabilities

Xin Tong, Thi Thu Uyen Hoang, Xue-Xin Wei and Michael Hahn

Papers from arXiv.org

Abstract: Understanding the representation of probability in the human mind has been of great interest to understanding human decision making. Classical paradoxes in decision making suggest that human perception distorts probability magnitudes. Previous accounts postulate a Probability Weighting Function that transforms perceived probabilities; however, its motivation has been debated. Recent work has sought to motivate this function in terms of noisy representations of probabilities in the human mind. Here, we present an account of the Probability Weighting Function grounded in rational inference over optimal decoding from noisy neural encoding of quantities. We show that our model accurately accounts for behavior in a lottery task and a dot counting task. It further accounts for adaptation to a bimodal short-term prior. Taken together, our results provide a unifying account grounding the human representation of probability in rational inference.

Date: 2025-10
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.04698 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.04698

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-10-07
Handle: RePEc:arx:papers:2510.04698