Robust Inference for Convex Pairwise Difference Estimators
Matias D. Cattaneo,
Michael Jansson and
Kenichi Nagasawa
Papers from arXiv.org
Abstract:
This paper develops distribution theory and bootstrap-based inference methods for a broad class of convex pairwise difference estimators. These estimators minimize a kernel-weighted convex-in-parameter function over observation pairs that are similar in terms of certain covariates, where the similarity is governed by a localization (bandwidth) parameter. While classical results establish asymptotic normality under restrictive bandwidth conditions, we show that valid Gaussian and bootstrap-based inference remains possible under substantially weaker assumptions. First, we extend the theory of small bandwidth asymptotics to convex pairwise estimation settings, deriving robust Gaussian approximations even when a smaller than standard bandwidth is used. Second, we employ a debiasing procedure based on generalized jackknifing to enable inference with larger bandwidths, while preserving convexity of the objective function. Third, we construct a novel bootstrap method that adjusts for bandwidth-induced variance distortions, yielding valid inference across a wide range of bandwidth choices. Our proposed inference method enjoys demonstrable more robustness, while retaining the practical appeal of convex pairwise difference estimators.
Date: 2025-10
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.05991 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.05991
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().