EconPapers    
Economics at your fingertips  
 

Sentiment and Volatility in Financial Markets: A Review of BERT and GARCH Applications during Geopolitical Crises

Domenica Mino and Cillian Williamson

Papers from arXiv.org

Abstract: Artificial intelligence techniques have increasingly been applied to understand the complex relationship between public sentiment and financial market behaviour. This study explores the relationship between the sentiment of news related to the Russia-Ukraine war and the volatility of the stock market. A comprehensive dataset of news articles from major US platforms, published between January 1 and July 17, 2024, was analysed using a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model adapted for financial language. We extracted sentiment scores and applied a Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model, enhanced with a Student-t distribution to capture the heavy-tailed nature of financial returns data. The results reveal a statistically significant negative relationship between negative news sentiment and market stability, suggesting that pessimistic war coverage is associated with increased volatility in the S&P 500 index. This research demonstrates how artificial intelligence and natural language processing can be integrated with econometric modelling to assess real-time market dynamics, offering valuable tools for financial risk analysis during geopolitical crises.

Date: 2025-10
New Economics Papers: this item is included in nep-cis and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.16503 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.16503

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-11-15
Handle: RePEc:arx:papers:2510.16503