EconPapers    
Economics at your fingertips  
 

Denoising Complex Covariance Matrices with Hybrid ResNet and Random Matrix Theory: Cryptocurrency Portfolio Applications

Andres Garcia-Medina

Papers from arXiv.org

Abstract: Covariance matrices estimated from short, noisy, and non-Gaussian financial time series-particularly cryptocurrencies-are notoriously unstable. Empirical evidence indicates that these covariance structures often exhibit power-law scaling, reflecting complex and hierarchical interactions among assets. Building on this insight, we propose a power-law covariance model to characterize the collective dynamics of cryptocurrencies and develop a hybrid estimator that integrates Random Matrix Theory (RMT) with Residual Neural Networks (ResNets). The RMT component regularizes the eigenvalue spectrum under high-dimensional noise, while the ResNet learns data-driven corrections to recover latent structural dependencies. Monte Carlo simulations show that ResNet-based estimators consistently minimize both Frobenius and minimum-variance (MV) losses across diverse covariance models. Empirical experiments on 89 cryptocurrencies (2020-2025), using a training period ending at the local BTC maximum in November 2021 and testing through the subsequent bear market, demonstrate that a two-step estimator combining hierarchical filtering with ResNet corrections yields the most profitable and balanced portfolios, remaining robust under market regime shifts. These findings highlight the potential of combining RMT, deep learning, and power-law modeling to capture the intrinsic complexity of financial systems and enhance portfolio optimization under realistic conditions.

Date: 2025-10
New Economics Papers: this item is included in nep-ecm and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.19130 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.19130

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-11-15
Handle: RePEc:arx:papers:2510.19130