EconPapers    
Economics at your fingertips  
 

Testing Most Influential Sets

Lucas Darius Konrad and Nikolas Kuschnig

Papers from arXiv.org

Abstract: Small subsets of data with disproportionate influence on model outcomes can have dramatic impacts on conclusions, with a few data points sometimes overturning key findings. While recent work has developed methods to identify these most influential sets, no formal theory exists to determine when their influence reflects genuine problems rather than natural sampling variation. We address this gap by developing a principled framework for assessing the statistical significance of most influential sets. Our theoretical results characterize the extreme value distributions of maximal influence and enable rigorous hypothesis tests for excessive influence, replacing current ad-hoc sensitivity checks. We demonstrate the practical value of our approach through applications across economics, biology, and machine learning benchmarks.

Date: 2025-10, Revised 2025-10
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.20372 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.20372

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-11-15
Handle: RePEc:arx:papers:2510.20372