EconPapers    
Economics at your fingertips  
 

Predicting Household Water Consumption Using Satellite and Street View Images in Two Indian Cities

Qiao Wang and Joseph George

Papers from arXiv.org

Abstract: Monitoring household water use in rapidly urbanizing regions is hampered by costly, time-intensive enumeration methods and surveys. We investigate whether publicly available imagery-satellite tiles, Google Street View (GSV) segmentation-and simple geospatial covariates (nightlight intensity, population density) can be utilized to predict household water consumption in Hubballi-Dharwad, India. We compare four approaches: survey features (benchmark), CNN embeddings (satellite, GSV, combined), and GSV semantic maps with auxiliary data. Under an ordinal classification framework, GSV segmentation plus remote-sensing covariates achieves 0.55 accuracy for water use, approaching survey-based models (0.59 accuracy). Error analysis shows high precision at extremes of the household water consumption distribution, but confusion among middle classes is due to overlapping visual proxies. We also compare and contrast our estimates for household water consumption to that of household subjective income. Our findings demonstrate that open-access imagery, coupled with minimal geospatial data, offers a promising alternative to obtaining reliable household water consumption estimates using surveys in urban analytics.

Date: 2025-10
New Economics Papers: this item is included in nep-dev and nep-sea
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.26957 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.26957

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-11-18
Handle: RePEc:arx:papers:2510.26957