EconPapers    
Economics at your fingertips  
 

Temporal Fusion Transformer for Multi-Horizon Probabilistic Forecasting of Weekly Retail Sales

Santhi Bharath Punati, Sandeep Kanta, Udaya Bhasker Cheerala, Madhusudan G Lanjewar and Praveen Damacharla

Papers from arXiv.org

Abstract: Accurate multi-horizon retail forecasts are critical for inventory and promotions. We present a novel study of weekly Walmart sales (45 stores, 2010--2012) using a Temporal Fusion Transformer (TFT) that fuses static store identifiers with time-varying exogenous signals (holidays, CPI, fuel price, temperature). The pipeline produces 1--5-week-ahead probabilistic forecasts via Quantile Loss, yielding calibrated 90\% prediction intervals and interpretability through variable-selection networks, static enrichment, and temporal attention. On a fixed 2012 hold-out dataset, TFT achieves an RMSE of \$57.9k USD per store-week and an $R^2$ of 0.9875. Across a 5-fold chronological cross-validation, the averages are RMSE = \$64.6k USD and $R^2$ = 0.9844, outperforming the XGB, CNN, LSTM, and CNN-LSTM baseline models. These results demonstrate practical value for inventory planning and holiday-period optimization, while maintaining model transparency.

Date: 2025-11
New Economics Papers: this item is included in nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2511.00552 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.00552

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-20
Handle: RePEc:arx:papers:2511.00552