EconPapers    
Economics at your fingertips  
 

Learning bounds for doubly-robust covariate shift adaptation

Jeonghwan Lee and Cong Ma

Papers from arXiv.org

Abstract: Distribution shift between the training domain and the test domain poses a key challenge for modern machine learning. An extensively studied instance is the \emph{covariate shift}, where the marginal distribution of covariates differs across domains, while the conditional distribution of outcome remains the same. The doubly-robust (DR) estimator, recently introduced by \cite{kato2023double}, combines the density ratio estimation with a pilot regression model and demonstrates asymptotic normality and $\sqrt{n}$-consistency, even when the pilot estimates converge slowly. However, the prior arts has focused exclusively on deriving asymptotic results and has left open the question of non-asymptotic guarantees for the DR estimator. This paper establishes the first non-asymptotic learning bounds for the DR covariate shift adaptation. Our main contributions are two-fold: (\romannumeral 1) We establish \emph{structure-agnostic} high-probability upper bounds on the excess target risk of the DR estimator that depend only on the $L^2$-errors of the pilot estimates and the Rademacher complexity of the model class, without assuming specific procedures to obtain the pilot estimate, and (\romannumeral 2) under \emph{well-specified parameterized models}, we analyze the DR covariate shift adaptation based on modern techniques for non-asymptotic analysis of MLE, whose key terms governed by the Fisher information mismatch term between the source and target distributions. Together, these findings bridge asymptotic efficiency properties and a finite-sample out-of-distribution generalization bounds, providing a comprehensive theoretical underpinnings for the DR covariate shift adaptation.

Date: 2025-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2511.11003 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.11003

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-20
Handle: RePEc:arx:papers:2511.11003