EconPapers    
Economics at your fingertips  
 

Identification-aware Markov chain Monte Carlo

Toru Kitagawa and Yizhou Kuang

Papers from arXiv.org

Abstract: Leaving posterior sensitivity concerns aside, non-identifiability of the parameters does not raise a difficulty for Bayesian inference as far as the posterior is proper, but multi-modality or flat regions of the posterior induced by the lack of identification leaves a challenge for modern Bayesian computation. Sampling methods often struggle with slow or non-convergence when dealing with multiple modes or flat regions of the target distributions. This paper develops a novel Markov chain Monte Carlo (MCMC) approach for non-identified models, leveraging the knowledge of observationally equivalent sets of parameters, and highlights an important role that identification plays in modern Bayesian analysis.We show that our identification-aware proposal eliminates mode entrapment, achieving a convergence rate uniformly bounded away from zero, in sharp contrast to the exponentially decaying rates characterizing standard Random Walk Metropolis and Hamiltonian Monte Carlo. Simulation studies show its superior performance compared to other popular computational methods including Hamiltonian Monte Carlo and sequential Monte Carlo. We also demonstrate that our method uncovers non-trivial modes in the target distribution in a structural vector moving-average (SVMA) application.

Date: 2025-11, Revised 2025-12
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2511.12847 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.12847

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-20
Handle: RePEc:arx:papers:2511.12847