Probability Weighting Meets Heavy Tails: An Econometric Framework for Behavioral Asset Pricing
Akash Deep,
Svetlozar T. Rachev and
Frank J. Fabozzi
Papers from arXiv.org
Abstract:
We develop an econometric framework integrating heavy-tailed Student's $t$ distributions with behavioral probability weighting while preserving infinite divisibility. Using 432{,}752 observations across 86 assets (2004--2024), we demonstrate Student's $t$ specifications outperform Gaussian models in 88.4\% of cases. Bounded probability-weighting transformations preserve mathematical properties required for dynamic pricing. Gaussian models underestimate 99\% Value-at-Risk by 19.7\% versus 3.2\% for our specification. Joint estimation procedures identify tail and behavioral parameters with established asymptotic properties. Results provide robust inference for asset-pricing applications where heavy tails and behavioral distortions coexist.
Date: 2025-11
New Economics Papers: this item is included in nep-ecm
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2511.16563 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.16563
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().