Estimating Program Participation with Partial Validation
Augustine Denteh and
Pierre E. Nguimkeu
Papers from arXiv.org
Abstract:
This paper considers the estimation of binary choice models when survey responses are possibly misclassified but one of the response category can be validated. Partial validation may occur when survey questions about participation include follow-up questions on that particular response category. In this case, we show that the initial two-sided misclassification problem can be transformed into a one-sided one, based on the partially validated responses. Using the updated responses naively for estimation does not solve or mitigate the misclassification bias, and we derive the ensuing asymptotic bias under general conditions. We then show how the partially validated responses can be used to construct a model for participation and propose consistent and asymptotically normal estimators that overcome misclassification error. Monte Carlo simulations are provided to demonstrate the finite sample performance of the proposed and selected existing methods. We provide an empirical illustration on the determinants of health insurance coverage in Ghana. We discuss implications for the design of survey questionnaires that allow researchers to overcome misclassification biases without recourse to relatively costly and often imperfect validation data.
Date: 2025-12
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2512.14616 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2512.14616
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().