Relative arbitrage problem under eigenvalue lower bounds
Jou-Hua Lai,
Mykhaylo Shkolnikov and
H. Mete Soner
Papers from arXiv.org
Abstract:
We give a new formulation of the relative arbitrage problem from stochastic portfolio theory that asks for a time horizon beyond which arbitrage relative to the market exists in all ``sufficiently volatile'' markets. In our formulation, ``sufficiently volatile'' is interpreted as a lower bound on an ordered eigenvalue of the instantaneous covariation matrix, a quantity that has been studied extensively in the empirical finance literature. Upon framing the problem in the language of stochastic optimal control, we characterize the time horizon in question through the unique upper semicontinuous viscosity solution of a fully nonlinear elliptic partial differential equation (PDE). In a special case, this PDE amounts to the arrival time formulation of the Ambrosio-Soner co-dimension mean curvature flow. Beyond the setting of stochastic portfolio theory, the stochastic optimal control problem is analyzed for arbitrary compact, possibly non-convex, domains, thanks to a boundedness assumption on the instantaneous covariation matrix.
Date: 2025-12
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2512.17702 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2512.17702
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().