Stylized Facts and Their Microscopic Origins: Clustering, Persistence, and Stability in a 2D Ising Framework
Hern\'an Ezequiel Ben\'itez and
Claudio Oscar Dorso
Papers from arXiv.org
Abstract:
The analysis of financial markets using models inspired by statistical physics offers a fruitful approach to understand collective and extreme phenomena [3, 14, 15] In this paper, we present a study based on a 2D Ising network model where each spin represents an agent that interacts only with its immediate neighbors plus a term reated to the mean field [1, 2]. From this simple formulation, we analyze the formation of spin clusters, their temporal persistence, and the morphological evolution of the system as a function of temperature [5, 19]. Furthermore, we introduce the study of the quantity $1/2P\sum_{i}|S_{i}(t)+S_{i}(t+\Delta t)|$, which measures the absolute overlap between consecutive configurations and quantifies the degree of instantaneous correlation between system states. The results show that both the morphology and persistence of the clusters and the dynamics of the absolute sum can explain universal statistical properties observed in financial markets, known as stylized facts [2, 12, 18]: sharp peaks in returns, distributions with heavy tails, and zero autocorrelation. The critical structure of clusters and their reorganization over time thus provide a microscopic mechanism that gives rise to the intermittency and clustered volatility observed in prices [2, 15].
Date: 2025-12
References: Add references at CitEc
Citations:
Published in Physica A (2025)
Downloads: (external link)
http://arxiv.org/pdf/2512.17925 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2512.17925
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().