EconPapers    
Economics at your fingertips  
 

Synthetic Financial Data Generation for Enhanced Financial Modelling

Christophe D. Hounwanou, Yae Ulrich Gaba and Pierre Ntakirutimana

Papers from arXiv.org

Abstract: Data scarcity and confidentiality in finance often impede model development and robust testing. This paper presents a unified multi-criteria evaluation framework for synthetic financial data and applies it to three representative generative paradigms: the statistical ARIMA-GARCH baseline, Variational Autoencoders (VAEs), and Time-series Generative Adversarial Networks (TimeGAN). Using historical S and P 500 daily data, we evaluate fidelity (Maximum Mean Discrepancy, MMD), temporal structure (autocorrelation and volatility clustering), and practical utility in downstream tasks, specifically mean-variance portfolio optimization and volatility forecasting. Empirical results indicate that ARIMA-GARCH captures linear trends and conditional volatility but fails to reproduce nonlinear dynamics; VAEs produce smooth trajectories that underestimate extreme events; and TimeGAN achieves the best trade-off between realism and temporal coherence (e.g., TimeGAN attained the lowest MMD: 1.84e-3, average over 5 seeds). Finally, we articulate practical guidelines for selecting generative models according to application needs and computational constraints. Our unified evaluation protocol and reproducible codebase aim to standardize benchmarking in synthetic financial data research.

Date: 2025-12
New Economics Papers: this item is included in nep-ets
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2512.21791 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2512.21791

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2026-01-13
Handle: RePEc:arx:papers:2512.21791