EconPapers    
Economics at your fingertips  
 

On lead-lag estimation of non-synchronously observed point processes

Takaaki Shiotani, Takaki Hayashi and Yuta Koike

Papers from arXiv.org

Abstract: This paper introduces a new theoretical framework for analyzing lead-lag relationships between point processes, with a special focus on applications to high-frequency financial data. In particular, we are interested in lead-lag relationships between two sequences of order arrival timestamps. The seminal work of Dobrev and Schaumburg proposed model-free measures of cross-market trading activity based on cross-counts of timestamps. While their method is known to yield reliable results, it faces limitations because its original formulation inherently relies on discrete-time observations, an issue we address in this study. Specifically, we formulate the problem of estimating lead-lag relationships in two point processes as that of estimating the shape of the cross-pair correlation function (CPCF) of a bivariate stationary point process, a quantity well-studied in the neuroscience and spatial statistics literature. Within this framework, the prevailing lead-lag time is defined as the location of the CPCF's sharpest peak. Under this interpretation, the peak location in Dobrev and Schaumburg's cross-market activity measure can be viewed as an estimator of the lead-lag time in the aforementioned sense. We further propose an alternative lead-lag time estimator based on kernel density estimation and show that it possesses desirable theoretical properties and delivers superior numerical performance. Empirical evidence from high-frequency financial data demonstrates the effectiveness of our proposed method.

Date: 2026-01
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2601.01871 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.01871

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2026-01-06
Handle: RePEc:arx:papers:2601.01871