Quantitative Methods in Finance
Eric Vansteenberghe
Papers from arXiv.org
Abstract:
These lecture notes provide a comprehensive introduction to Quantitative Methods in Finance (QMF), designed for graduate students in finance and economics with heterogeneous programming backgrounds. The material develops a unified toolkit combining probability theory, statistics, numerical methods, and empirical modeling, with a strong emphasis on implementation in Python. Core topics include random variables and distributions, moments and dependence, simulation and Monte Carlo methods, numerical optimization, root-finding, and time-series models commonly used in finance and macro-finance. Particular attention is paid to translating theoretical concepts into reproducible code, emphasizing vectorization, numerical stability, and interpretation of outputs. The notes progressively bridge theory and practice through worked examples and exercises covering asset pricing intuition, risk measurement, forecasting, and empirical analysis. By focusing on clarity, minimal prerequisites, and hands-on computation, these lecture notes aim to serve both as a pedagogical entry point for non-programmers and as a practical reference for applied researchers seeking transparent and replicable quantitative methods in finance.
Date: 2026-01
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2601.12896 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.12896
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().