EconPapers    
Economics at your fingertips  
 

A machine learning approach to volatility forecasting

Kim Christensen, Mathias Siggaard and Bezirgen Veliyev

Papers from arXiv.org

Abstract: We inspect how accurate machine learning (ML) is at forecasting realized variance of the Dow Jones Industrial Average index constituents. We compare several ML algorithms, including regularization, regression trees, and neural networks, to multiple Heterogeneous AutoRegressive (HAR) models. ML is implemented with minimal hyperparameter tuning. In spite of this, ML is competitive and beats the HAR lineage, even when the only predictors are the daily, weekly, and monthly lags of realized variance. The forecast gains are more pronounced at longer horizons. We attribute this to higher persistence in the ML models, which helps to approximate the long-memory of realized variance. ML also excels at locating incremental information about future volatility from additional predictors. Lastly, we propose a ML measure of variable importance based on accumulated local effects. This shows that while there is agreement about the most important predictors, there is disagreement on their ranking, helping to reconcile our results.

Date: 2026-01
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2601.13014 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2601.13014

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2026-01-21
Handle: RePEc:arx:papers:2601.13014