Exploring the Interpretability of Forecasting Models for Energy Balancing Market
Oskar V{\aa}le,
Shiliang Zhang,
Sabita Maharjan and
Gro Kl{\ae}boe
Papers from arXiv.org
Abstract:
The balancing market in the energy sector plays a critical role in physically and financially balancing the supply and demand. Modeling dynamics in the balancing market can provide valuable insights and prognosis for power grid stability and secure energy supply. While complex machine learning models can achieve high accuracy, their black-box nature severely limits the model interpretability. In this paper, we explore the trade-off between model accuracy and interpretability for the energy balancing market. Particularly, we take the example of forecasting manual frequency restoration reserve (mFRR) activation price in the balancing market using real market data from different energy price zones. We explore the interpretability of mFRR forecasting using two models: extreme gradient boosting (XGBoost) machine and explainable boosting machine (EBM). We also integrate the two models, and we benchmark all the models against a baseline naive model. Our results show that EBM provides forecasting accuracy comparable to XGBoost while yielding a considerable level of interpretability. Our analysis also underscores the challenge of accurately predicting the mFRR price for the instances when the activation price deviates significantly from the spot price. Importantly, EBM's interpretability features reveal insights into non-linear mFRR price drivers and regional market dynamics. Our study demonstrates that EBM is a viable and valuable interpretable alternative to complex black-box AI models in the forecast for the balancing market.
Date: 2026-01
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2602.00049 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2602.00049
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().