Diagnostic Tests for the Necessity of Weight in Regression With Survey Data
Feng Wang,
HaiYing Wang and
Jun Yan
International Statistical Review, 2023, vol. 91, issue 1, 55-71
Abstract:
To weight or not to weight in regression analyses with survey data has been debated in the literature. The problem is essentially a tradeoff between the bias and the variance of the regression coefficient estimator. An array of diagnostic tests for informative weights have been developed. Nonetheless, studies comparing the performance of the tests, especially for finite samples, are scarce, and the theoretical equivalence of some tests has not been investigated. Focusing on the linear regression setting, we review a collection of such tests and propose enhanced versions of some of them that require an auxiliary regression model for the weight. Further, the equivalence of two popular tests is established which has not been reported before. In contrast to existing reviews with no empirical comparison, we compare the sizes and powers of the tests in simulation studies. The reviewed tests are applied to a regression analysis of the family expenditure using the data from the China Family Panel Study.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12509
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:91:y:2023:i:1:p:55-71
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().