Correspondence Analysis Using the Cressie–Read Family of Divergence Statistics
Eric J. Beh and
Rosaria Lombardo
International Statistical Review, 2024, vol. 92, issue 1, 17-42
Abstract:
The foundations of correspondence analysis rests with Pearson's chi‐squared statistic. More recently, it has been shown that the Freeman–Tukey statistic plays an important role in correspondence analysis and confirmed the advantages of the Hellinger distance that have long been advocated in the literature. Pearson's and the Freeman–Tukey statistics are two of five commonly used special cases of the Cressie–Read family of divergence statistics. Therefore, this paper explores the features of correspondence analysis where its foundations lie with this family and shows that log‐ratio analysis (an approach that has gained increasing attention in the correspondence analysis and compositional data analysis literature) and the method based on the Hellinger distance are special cases of this new framework.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12541
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:92:y:2024:i:1:p:17-42
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().